考研数学常用公式速查
一、导数
| 函数 $f(x)$ | 导数 $f'(x)$ | |
|---|---|---|
| $C$ (常数) | $0$ | |
| $x^a$ | $ax^{a-1}$ | |
| $a^x$ | $a^x \ln a$ | |
| $e^x$ | $e^x$ | |
| $\log_a x$ | $\frac{1}{x \ln a}$ | |
| $\ln x$ | $\frac{1}{x}$ | |
| $\sin x$ | $\cos x$ | |
| $\cos x$ | $-\sin x$ | |
| $\tan x$ | $\sec^2 x$ | |
| $\cot x$ | $-\csc^2 x$ | |
| $\sec x$ | $\sec x \tan x$ | |
| $\csc x$ | $-\csc x \cot x$ | |
| $\arcsin x$ | $\frac{1}{\sqrt{1-x^2}}$ | |
| $\arccos x$ | $-\frac{1}{\sqrt{1-x^2}}$ | |
| $\arctan x$ | $\frac{1}{1+x^2}$ | |
| $arccot x$ | $-\frac{1}{1+x^2}$ |
二、积分
1. 基本积分表
-
$\int k \, dx = kx + C$
-
$\int x^a \, dx = \frac{x^{a+1}}{a+1} + C \quad (a \neq -1)$
-
$\int \frac{1}{x} \, dx = \ln|x| + C$
-
$\int a^x \, dx = \frac{a^x}{\ln a} + C$
-
$\int e^x \, dx = e^x + C$
2. 三角函数积分
-
$\int \cos x \, dx = \sin x + C$
-
$\int \sin x \, dx = -\cos x + C$
-
$\int \sec^2 x \, dx = \tan x + C$
-
$\int \csc^2 x \, dx = -\cot x + C$
-
$\int \tan x \, dx = -\ln|\cos x| + C$
-
$\int \cot x \, dx = \ln|\sin x| + C$
-
$\int \sec x \, dx = \ln|\sec x + \tan x| + C$
-
$\int \csc x \, dx = \ln|\csc x - \cot x| + C$
3. 重要高阶/根式积分
-
平方和/差类型 (生成反三角函数):
-
$\int \frac{1}{\sqrt{a^2-x^2}} \, dx = \arcsin \frac{x}{a} + C$
-
$\int \frac{1}{a^2+x^2} \, dx = \frac{1}{a} \arctan \frac{x}{a} + C$
-
$\int \frac{1}{a^2-x^2} \, dx = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C$
-
-
“长对数”类型:
-
$\int \frac{1}{\sqrt{x^2+a^2}} \, dx = \ln(x + \sqrt{x^2+a^2}) + C$
-
$\int \frac{1}{\sqrt{x^2-a^2}} \, dx = \ln|x + \sqrt{x^2-a^2}| + C$
-
-
复杂根式 (分部积分推导结果):
- $\int \sqrt{x^2+a^2} \, dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2}\ln(x+\sqrt{x^2+a^2}) + C$
- $\int \sqrt{x^2-a^2} \, dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln|x+\sqrt{x^2-a^2}| + C$
- $\int \sqrt{a^2-x^2} \, dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin \frac{x}{a} + C$
-
特殊技巧积分:
- $\int \frac{1}{1+e^x} \, dx = x - \ln(1+e^x) + C$
- $\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C$
- $\int \csc^3 x \, dx = -\frac{1}{2}\csc x \cot x + \frac{1}{2}\ln|\csc x - \cot x| + C$
三、 三角函数公式
1. 基础恒等式
-
$\sin^2 x + \cos^2 x = 1$
-
$\tan^2 x + 1 = \sec^2 x$
-
$\cot^2 x + 1 = \csc^2 x$
-
$\arcsin x + \arccos x = \frac{\pi}{2}$
2. 倍角与半角公式 (降幂扩角)
-
二倍角:
-
$\sin 2x = 2\sin x \cos x$
-
$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$
-
-
降幂公式:
-
$\sin^2 x = \frac{1 - \cos 2x}{2}$
-
$\cos^2 x = \frac{1 + \cos 2x}{2}$
-
3. 和差化积与积化和差
和差化积:
-
$\sin \alpha + \sin \beta = 2\sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$
-
$\sin \alpha - \sin \beta = 2\cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}$
-
$\cos \alpha + \cos \beta = 2\cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$
-
$\cos \alpha - \cos \beta = -2\sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}$
积化和差:
-
$\sin \alpha \sin \beta = -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)]$
-
$\sin \alpha \cos \beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$
-
$\cos \alpha \sin \beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$
-
$\cos \alpha \cos \beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)]$
四、 麦克劳林公式
-
$\sin x = x - \frac{1}{6}x^3 + o(x^3)$
-
$\arcsin x = x + \frac{1}{6}x^3 + o(x^3)$
-
$\tan x = x + \frac{1}{3}x^3 + o(x^3)$
-
$\arctan x = x - \frac{1}{3}x^3 + o(x^3)$
-
$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
-
$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$
-
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$
-
$(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + o(x^2)$
五、 反三角函数图像

- $y = \arcsin x$: 定义域 $[-1, 1]$,值域 $[-\frac{\pi}{2}, \frac{\pi}{2}]$,单调递增,奇函数

- $y = \arccos x$: 定义域 $[-1, 1]$,值域 $[0, \pi]$,单调递减,非奇非偶

- $y = \arctan x$: 定义域 $(-\infty, +\infty)$,值域 $(-\frac{\pi}{2}, \frac{\pi}{2})$,单调递增,奇函数

- $y = arccot x$: 定义域 $(-\infty, +\infty)$,值域 $(0, \pi)$,单调递减。
转载请注明出处: Zephem
本文的链接地址: https://zephem.top/kao-yan-shu-xue-chang-yong-gong-shi-su-cha.html
暂无评论
zephem
第一眼只看这些图的时候似懂非懂,经由你这...
测试工程师笑话
这是系统生成的演示评论
关于本站